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Boundary effect behavior understood as near-boundary suppression of boundary fluctu-
ation loads is described in various ways depending on the mathematical representation
of solutions and the type of the center. In the case of periodic composites, the ho-
mogenization method is decisive here. In the framework of the Tolerance Averaging
Approach, developed by prof. Cz. Woźniak leading to an approximate model of phe-
nomena related to periodic composites this effect is described by a homogeneous part
of differential equation for fluctuation amplitudes and usually this approximate descrip-
tion of the boundary effect behavior is restricted to a single fluctuation. In this paper,
contrary to the previous elaborations, the boundary effect is developed in the variant of
the tolerance thermal conductivity model in which the temperature field is represented
by the Fourier expansions composed by an average temperature with infinite number of
Fourier terms imposed on the average temperature as tolerance fluctuation suppressed
in the framework of the boundary effect.

Keywords: even temperature fluctuations, homogenization, tolerance modelling.

1. Introductory concepts

The derivation of a single conductivity equation for the average temperature field
is a crucial problem in any homogenization technique approach of thermal behav-
iors in periodic composites. In this paper this procedure is finalized as a result
of the Tolerance Modelling Technique adopted to the investigation of thermal so-

https://doi.org/10.2478/mme-2018-0053



684 Kula, D. Wierzbicki, E., Witkowska-Dobrev, J. and Wodzyński,  L.

lutions of Heat Transfer Equation in periodic composites in the form of Fourier
expansions. The direct consequence of Equations presented in [9,15] in the special
two-dimensional case with one-directional periodicity for single fundamental odd
fluctuation. This problem includes a counterpart to the approximate description
of Boundary Effect Behavior developed by Cz. Woźniak, cf. [3], and illustrated
by many continuators in the form of examples in heat conduction as well as in the
linear elasticity areas, [2–7]. However description proposed in this paper includes
a certain seemingly small but qualitative correction of the coefficient in term free
of the spatial derivatives in single equation for Fourier amplitude. Mentioned cor-
rection seems to eliminate near-boundary problems in original tolerance description
developed by Cz. Woźniak et. al., [3,11], and continuators, [13,14].

All known tolerance Boundary Effect Behavior descriptions takes into account
the Tolerance Model Equations reduced to the special of two-dimensional case with
one-directional periodicity and for single saw-like shape function. However, this ap-
proach to the modelling of near-boundary behaviors in the layered composites takes
into account model equations which as a rule lead to the approximate description
of physical behaviors. In this paper we are to investigate the tolerance bound-
ary effect behavior description but instead of using model equations obtained by
original Tolerance Model Equations we are to apply the Extended Tolerance Model
equations as a fundamental tool of modelling. Considerations are restricted to the
heat transfer behaviors and one-directional composite periodicity. There are also
known approaches to the investigation of the near-boundary phenomena based on
the asymptotic homogenization, [1,2], and modifying the original homogenization
equations by introducing so-called correctors. In this work, we will not use them.

Following approach, originally suggested by Cz. Woźniak [3] equations of the Ex-
tended Tolerance Model we restrict to the case in Fourier expansion being a Fourier
representation of the temperature field contain exclusively one fluctuation term φ.
Fourier amplitude related to this single fluctuation will be denoted by q. Denoting
by φ the number of repetitive cells in the periodic composite consider:

Ω = (0, L) × (0, δ)
ΩB =

∪
k=1,...,M{(y, z) : −ηλ < y − kλ < 0, z ∈ (0, δ)}

ΩW =
∪

k=1,...,M{(y, z) : 0 < y − kλ < (1 − η)λ, z ∈ (0, δ)}
(1)

as the region occupied by the composite, as the regions occupied by the BLACK
composite component and as the regions occupied by the WHITE composite com-
ponent.

The type of the composite periodicity, as a certain geometrical support unequivocally
picked from the composite, is determined by the saturation η = η(z), 0 < η(z) < 1,
η = η(z), and the length λ of the repetitive cell ∆ ≡ (−ηλ, λ − ηλ). Situations in
which λ depends in the periodic y and nonperiodic z variables, i.e. in which ∂λ

∂y ̸= 0

or ∂λ
∂z ̸= 0 will not be egzamined here. In the mentioned special case Extended
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Tolerance Model equations, are reduced to the form:

⟨c⟩u̇− [ ∂
∂y ,

∂
∂z ][⟨k⟩(z)[0, ∂u(z)∂z ]T − d

dz [⟨k ∂φ
∂z ⟩q(z)]−

−[ ∂
∂y ,

∂
∂z ]⟨k[∂g∂y ,

∂g
∂z ]T ⟩ψ(z) = −⟨b⟩

⟨∇T gAk∇gB⟩ψB + ⟨k∇T gA⟩∇u = 0

λ2(⟨cφ2⟩q̇ − d
dz (⟨kφ2⟩ dqdz ) + λ⟨kφ∂φ

∂z ⟩
dq
dz + ⟨k(∂φ

∂y )2⟩q+
+⟨k ∂φ

∂y
∂g
∂y ⟩ψ + ⟨k ∂φ

∂y ⟩
du
dz = λ⟨φb⟩

(2)

Eliminating tolerance amplitude ψ from the second of Equations (1) we arrive at:

⟨c⟩u̇− d
dy (k⊥ du

dy ) − d
dz (k⊥ du

dz ) = −⟨b⟩ + ( ∂
∂y ⟨k

∂φ
∂y ⟩ + ∂

∂z ⟨k
∂φ
∂z ⟩)q(z)

λ2(⟨cφ2⟩q̇ − d
dz (⟨kφ2⟩ dqdz ) + λ⟨kφ∂φ

∂z ⟩
dq
dz + ⟨k(∂φ

∂y )2⟩q = λ⟨φb⟩ − [k]⊥ du
dz

(3)

in which:

k⊥ = ⟨k⟩ − ⟨k ∂g
∂y ⟩2+⟨k ∂g

∂z ⟩
2

⟨k[( ∂g
∂y )2+( ∂g

∂z )]
2⟩

[k]⊥ = ⟨k ∂φ
∂z ⟩ −

⟨k ∂φ
∂y

∂g
∂y ⟩⟨k ∂g

∂z ⟩
⟨k[( ∂g

∂y )2+( ∂g
∂z )]

2⟩

(4)

is used as the projection of the Effective Conductivity Constant onto the z–variable
direction periodicity.

2. Boundary effect behavior

As a Boundary Effect Equation we understand every equation allowing to diagnose
the influence of a material structure on the behavior of a single impulse imposed
on a field describing a certain physical phenomenon in in a short time interval
following the occurrence of this impulse and/or in the immediate neighborhood of
the boundary on which this impulse occurred.

In the Tolerance Averaging Technique (TAT ) approach to the investigation of
near-boundary phenomena the Thermal Boundary Effect Equation is disengaged
from the original tolerance model equations, which are related to (3), by the special
selecting the boundary (or initial-boundary) conditions and the geometrical shape
of the region occupied by the composite leading to the situation in which obtained
boundary problem is solved by the reference the average temperature, usually having
the form u = αz + β for a certain α, β ∈ R, together with fluctuation amplitude
q = q(z) satisfying the homogeneous part of the “equation for tolerance amplitudes”
being a counterpart to the second from Equation (1):

λ2(⟨cφ2⟩q̇ − d

dz
(⟨kφ2⟩dq

dz
) + λ⟨kφ∂φ

∂z
⟩dq
dz

+ ⟨k(
∂φ

∂y
)2⟩q = 0 (5)

(or a counterpart to the stationary of the second from Equation (1)) together with
appropriate initial-boundary condition (or boundary condition) attached to this
counterpart. That is why Equation (5) will be referred to as the single-impulse
Thermal Boundary Effect Equation.

Equation (5) is an ordinary differential equation with variable or constant coeffi-
cients depending on whether or not the saturation η changes with the change of the
non-periodic z- variable. In the previous tolerance descriptions of boundary effect
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behavior (not only thermal boundary effect behavior), cf. [11–14], for the unidirec-
tional multicomponent composite on this description is usually imposed additional
condition related to [k]⊥ du

dz = 0 (resulting in the disposal of the term [k]⊥ du
dz in the

second from Equations (3)). In this paper we will not take into account this impo-
sition of treating the boundary effect problem of as a certain problem of controlling
the equation (5) by boundary conditions attached to this equation in order to obtain
the expected characteristics of impulses transport through the composite. That is
why we also allow the interpretation of Equation (5) in which q = [q1, ...., qn]T and
φ = [φ1, ...., φn]T (also including n → ∞) and in the boundary effect problem we
have n-th boundary values of Fourier amplitudes q1, ...., qn as control parameters.
That is why, in this paper Equation (5) will be a priori recognized as a properly
description of near-boundary phenomena treated as a result of “cooperation” of the
impulses imposed on the average temperature and the material-geometrical struc-
ture of the composite.

3. Formulation of the problem

It must be emphasized that Equation (5) includes the damping term λ⟨kφ∂φ
∂z ⟩

dq
dz

does not appear in the original tolerance description of the effect of the bound-
ary effect behavior. Since Tolerance Model Equations usually are not an exact but
approximate equivalent of the original heat transfer equation for composite mate-
rials and the Extended Tolerance Model Equations are the exact equivalent (in the
class of solutions given by appropriate Fourier basis) of these equations the question
arises whether skipping in the equation (5) of component λ⟨kφ∂φ

∂z ⟩
dq
dz , responsible

for an additional damping behavior is justified. Such omission is generally used in
the TAT approach. In this paper we illustrate this problem by two basic examples
regarding one-way FGM -periodicity.

4. Boundary Effect Equation for odd boundary single impulses

Let j = j(ξ) be an arbitrary periodic and even real function, j(ξ) = j(−ξ). The
basic period of j is taken as 2. Hence j(ξ + 2) = j(ξ) and if j(ξ + ξ1) = j(ξ)
for 0 < ξ1 < 2 then ξ1 = 2. Function j will be identified as generating function.
Now we are to consider ϕ(y) = λω( y

λ ) as the p-th j-based odd impulse iff ω(ξ, z) =
j((2p − 1)v(ξ, z)) for:

v(ξ, z) =

{
ξ

η(z) + 1 for − η(z) ≤ ξ ≤ 0
ξ

1−η(z) − 1 for 0 ≤ ξ ≤ 1 − η(z)
(6)

as a single Fourier fluctuation φ in (4). Note that:

∂φ

∂z
(
y

λ
, z) = yω′(v(y, z))

∂v

∂ξ
(
y

λ
, z)η′(z) = y

∂φ

∂y
(y, z)η′(z) (7)

and under:
∂v

∂ξ
(
y

λ
, z) =

χ(−ηλ,0](y, z)

η
+
χ(0,(1−η)λ)(y, z)

1 − η
(8)

where χA stands for the characteristic function of A ⊂ R, we conclude that:

∂φ

∂z
(
y

λ
, z) = y[

χ(−ηλ,0](y, z)

η
−
χ(0,(1−η)λ)(y, z)

1 − η
]
∂φ

∂y
(y, z)η′(z) (9)
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Finally:

⟨kφ∂φ
∂z

⟩ = 0.5(kB⟨y ∂(φ2)

∂y
⟩B − kW ⟨y ∂(φ2)

∂y
⟩W )η′(z)

= 0.5η′(z)(kB − kW )⟨y ∂(φ2)

∂y
⟩W ̸= 0 (10)

where ⟨·⟩B and ⟨·⟩W are integral mean values taken over repetitive cell parts occu-
pied by BLACK and WHITE composite component, respectively. Hence Boundary
Effect Equation (5) reduces to the form:

λ2(⟨cφ2⟩q̇− d

dz
(⟨kφ2⟩dq

dz
)−0.5η′(z)(kB−kW )⟨y ∂(φ2)

∂y
⟩W

dq

dz
+⟨k(

∂φ

∂y
)2⟩q = 0 (11)

including not vanish damping term and hence different from counterparts of (11)
investigated in [12, 10, 15] as well as a counterparts investigated in the framework
linear elasticity in [11, 13].

5. Boundary Effect Equation for even boundary single impulses

Let:

α ≡ 1

η + 1
(12)

Now we are to consider the p-th j-based odd impulse, p ∈ R:

f(ξ) =

{
1
2 [1 − 1

2(1+η) −
1

2(1+η)cos[2p( ξ
η + 1)] for − η ≤ ξ ≤ 0

1
2 [1 − 1

2(1+η) −
1

2(1+η)cos[2p( ξ̄
η + 1)]|ξ̄=0 for 0 ≤ ξ ≤ 1 − η

(13)

supported on the BLACK material regions as a single Fourier fluctuation φ in (4).
Note that:

∂φ

∂z
(
y

λ
, z) =

y

λ
η′(z)

χ(−ηλ,0](y, z)

η

∂φ

∂y
(y, z) (14)

Finally:

⟨kφ∂φ
∂z

⟩ = 0.5⟨ky∂(φ2)

∂y
⟩Bη′(z) = 0 (15)

Hence in Boundary Effect Equation (5) reduces to the form:

λ2(⟨cφ2⟩B q̇ − kB
d

dz
(⟨φ2⟩B

dq

dz
) + 0.5η′(z)⟨ky ∂(φ2)

∂y
⟩B
dq

dz
+ ⟨k(

∂φ

∂y
)2⟩Bq = 0 (16)

not including damping term and investigated in [11, 16].

6. Longitudinal and transversal gradation of material properties

Following [12] we accept that we deal with composites with longitudinal gradation
of material properties if ∂η

∂z = 0 and with composites with transversal gradation

of material properties if ∂η
∂y = 0. For longitudinal linear gradation we assume that
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η(y, z) = η(y) = y
L or η(y, z) = η(y) = 1 − y

L . For transversal linear gradation
η(y, z) = η(z) = z

δ or η(y, z) = η(z) = 1 − z
δ will be assumed. Note that:

⟨cφ2⟩ =
1

2
[ηkB + (1 − η)kW ], ⟨kφ2⟩ =

1

2
[ηkB + (1 − η)kW ] (17)

and

⟨k(
∂φ

∂y
)2⟩ =

(2p− 1)2π2

2
(
kB

η
+

kW

1 − η
), ⟨k(

∂φ

∂y
)2⟩ = 2p2π2 k

B

η
(18)

for odd and for BLACK even single impulse, respectively, we conclude that the
Bessel-like differential equation:

λ2(⟨cφ2⟩q̇ − d

dz
(⟨kφ2⟩dq

dz
) +

1

2
η′(z)(kB − kW )⟨y ∂(φ2)

∂y
⟩B + ⟨k(

∂φ

∂y
)2⟩q = 0 (19)

in the odd impulse case and:

λ2(⟨cφ2⟩q̇ − d

dz
(⟨kφ2⟩dq

dz
) +

1

2
η′(z)kB⟨y ∂(φ2)

∂y
⟩B + ⟨k(

∂φ

∂y
)2⟩q = 0 (20)

in the BLACK even impulse case is the mathematical support of the Boundary
Effect Equation for single odd and single even impulses. Equation (20) includes the
damping term.

7. Multi-impulse boundary effect equation

Allowing the interpretation of Equation (5) mentioned at the end of Section 2. we
intend to refer to the considerations made in [16], corresponding to the situation
in which q = [q1, q2] and φ = [φ1, φ2]T are related to the pair of single odd and
single even fluctuations and in which term λ⟨kφ∂φ

∂z ⟩
dq
dz should not be dropped out.

Allowing the interpretation of Equation (5) mentioned at the end of Section 2. we
also intend to refer to the considerations made in [8,10,11], corresponding to the
situation in which q = [q1, q2] and φ = [φ1, φ2]T are related to the pair of even [8,9]
and the pair of odd [11] fluctuations. In investigations presented in [10,11] the term
λ⟨kφ∂φ

∂z ⟩
dq
dz also should not be dropped out.

8. Final remarks

In the exemplified examples, with the exception of that indicated in Section 7., the
omitting the component λ⟨kφ∂φ

∂z ⟩
dq
dz in (5) is not justified. This remark is also deal

the saw-lake impulse used to set TAT approach to the description of Boundary
Effect Behaviors. Allowing the interpretation of Equation (5) mentioned at the
end of Section 2. leading to the multi-impulse Boundary Effect Equation control
problem indicated in Section 7. for the pair of single odd and single even impulses
produce situation in which term λ⟨kφ∂φ

∂z ⟩
dq
dz should not be dropped out. Control

problem signaled in this way is an open mathematics and engineering problem due
to the mutual cooperation of even and odd fluctuations during their transport by
the composite as two impulses imposed on the average temperature. It is difficult to
study, especially in the case of transversal and longitudinal grading of the composite
journal leading to the Bessel-type system of two differential equations with constant
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coefficients. The study of this system is an open mathematical and engineering
problem.

The paper contains an answer to the question how to transfer the methodology
for describing the damping phenomenon observed while the temperature boundary
loadings are superimposed by an additional impulse. The paper takes into account
equations of the Extended Tolerance Model of Heat Conduction developed in [15].
This new model of thermal conductivity, being an extension of the related Tolerance
Model developed originally by Professor Czes law Woźniak, produces the analytical
formula for the error made in the approximate solutions proposed in TAT and
hence this new model as well as resulted Boundary Effect Equation can be treated
as descriptions equivalent to that given by the parabolic Heat Transfer Equation.
Proposed in the paper upgrade of the tolerance Boundary Effect Equation contain
an important correction in the form of the additional term responsible for the special
damping not taken into account in the previous tolerance approaches.
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